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Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk
plasma parameters as seen by the WIND spacecraft

Bogdan Hnat,* Sandra C. Chapman, and George Rowlands
Physics Department, University of Warwick, Coventry CV4 7AL, United Kingdom

~Received 15 November 2002; published 21 May 2003!

The solar wind provides a natural laboratory for observations of magnetohydrodynamic~MHD! turbulence
over extended temporal scales. Here, we apply a model independent method of differencing and rescaling to
identify self-similarity in the probability density functions~PDF! of fluctuations in solar wind bulk plasma
parameters as seen by the WIND spacecraft. Whereas the fluctuations of speedv and interplanetary magnetic
field ~IMF! magnitudeB are multifractal, we find that the fluctuations in the ion densityr, energy densitiesB2

andrv2 as well as MHD-approximated Poynting fluxvB2 are monoscaling on the time scales up to 26 hr. The
single curve, which we find to describe the fluctuations PDF of all these quantities up to this time scale, is
non-Gaussian. We model this PDF with two approaches—Fokker-Planck, for which we derive the transport
coefficients and associated Langevin equation, and the Castaing distribution that arises from a model for the
intermittent turbulent cascade.

DOI: 10.1103/PhysRevE.67.056404 PACS number~s!: 52.35.Ra, 96.50.Ci, 95.30.Qd, 89.75.Da
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I. INTRODUCTION

Statistical properties of velocity field fluctuations r
corded in wind tunnels and those obtained from solar w
observations exhibit striking similarities@1,2#. A unifying
feature found in these fluctuations is fractal or multifrac
scaling. The probability density function~PDF!, unlike
power spectra that do not reveal intermittency, shows a c
departure from the normal distribution when we consider
difference in velocity on small spatial scales@3,4# while large
scale features appear to be uncorrelated and converge to
a Gaussian distribution. These similarities suggest a com
origin of the fluctuations in a turbulent fluid and the so
wind. The approach is then to treat the solar wind as
active highly nonlinear system with fluctuations arisingin
situ in a manner similar to that of hydrodynamic turbulen
@5–8#.

Kolmogorov’s K41 turbulence theory was based on
hypothesis that energy is transferred in the spectral doma
a constant rate through local interaction within the iner
range. This energy cascade is self-similar due to the lac
any characteristic spatial scale within the inertial range its
These assumptions led Kolmogorov to his scaling law for
moments of velocity structure functions@4#: S,

n5^uv(r 1,)
2v(r )un&}(e,)n/3, wheren is thenth moment,, is a spatial
scale, ande represents energy transfer rate. Experimen
results do not confirm this scaling, however, and modifi
tions to the theory include intermittency@9# by means of a
randomly varying energy transfer ratee. In this context, em-
pirical models have been widely used to approximate
shapes of fluctuation PDFs of data from wind tunnels@10# as
well as the solar wind; see, for example, Refs.@11,12#. The
picture of turbulence emerging from these models is m
more complex then has been suggested by the original
mogorov theory. It requires a multifractal phenomenology
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be invoked as the self-similarity of the cascade is brok
with the introduction of the intermittency.

Recently, however, a new approach has emerged w
the presence of intermittency in the system coincides w
statistical self-similarity, rather than multifractality, in th
fluctuations of selected quantities; these also exhibit l
tokurtic PDFs. An example of thisstatistical intermittency
was discussed in Ref.@13#, where a Le´vy distribution was
successfully fitted to the fluctuation PDFs of the price ind
over the entire range of data. Such a distribution arises fr
the statistically self-similar Le´vy process, also characterize
by enhanced~when compared with a Gaussian! probability
of large events. Recently Ref.@14# reported similar self-
similarity derived from the scaling of the solar wind inte
planetary magnetic field energy density fluctuations cal
lated from the WIND spacecraft dataset. Here, we appl
model-independent and generic PDF rescaling techniqu
extract the scaling properties of the solar wind fluctuatio
directly from the data. The aim is to determine a set
plasma parameters that exhibit statistical self-similarity a
to verify the nature of the PDF for their fluctuations. W
consider the following bulk plasma parameters: magne
field magnitudeB, velocity magnitudev, ion densityr, ki-
netic and magnetic energy densities (rv2 and B2), and
Poynting flux approximated byvB2. Such an approximation
of the Poynting flux assumes ideal magnetohydrodynam
~MHD! whereE5v3B. We find that the PDFs of fluctua
tions in r, B2, rv2, andvB2 exhibit monoscaling for up to
ten standard deviations, whileB andv are clearly multifrac-
tal as found previously@15,12#. The monoscaling allows us
to derive a Fokker-Planck equation that governs the dyn
ics of the fluctuations’ PDFs. The Fokker-Planck approa
provides a point of contact between the statistical appro
and the dynamical features of the system. This allows u
identify the functional form of the space dependent diffusi
coefficient that describes the fluctuations of these quantit
as well as to develop a diffusion model for the shape of th
PDFs. We also consider a Castaing model where fluctuat
©2003 The American Physical Society04-1
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are assumed to arise from a varying energy transfer ratee in
the nonlinear energy cascade, with Gaussian distribution
ln(e). The paper is structured as follows: in Sec. II we w
describe the dataset used for this study as well as the re
ing procedure. In Sec. III the results of the rescaling will
presented. Two possible models of the fluctuations will
discussed in Sec. IV. Finally, in Sec. V we will summarize
results discussed throughout this paper.

II. DATA AND METHODS

A. the Dataset

The solar wind is a supersonic, super-Alfve´nic flow of
compressible and inhomogeneous plasma. The WIND sp
craft orbits the Earth-Sun L1 point providing a set ofin situ
plasma parameters including magnetic field measurem
from the MFI experiment@16# and the plasma paramete
from the SWE instrument@17#. The WIND solar wind mag-
netic field and key parameter database used here com
over 1.53106, 46-s averaged samples from January 1995
December 1998. The selection criteria for solar wind data
given by the component of the spacecraft position vec
along the Earth-Sun line,X.0, and the vector magnitude
R.30 RE. The dataset includes intervals of both slow a
fast speed streams. Similar to other satellite measurem
short gaps in the WIND data file were present. To minim
the errors caused by such incomplete measurements
omitted any intervals where the gap was larger than 2%
the considered time lag. The original data were not avera
nor detrended. The data are not sampled evenly but there
two dominant sampling frequencies: 1/46 Hz and 1/92 H
We use sampling frequencyf s of 1/46 as our base and tre
other temporal resolutions as gaps when the accuracy
quires it (t<92 s).

FIG. 1. Unscaled PDFs of the ion density fluctuations. Time
t52k346 s, wherek50,1,2, . . . ,14. The standard deviation of th
PDF increases witht. The error bars on each bin within the PD
are estimated assuming Gaussian statistics for the data within
bin.
05640
or

al-

e
l

e-

ts

ise
o
re
r

d
ts,

e
we
f

ed
are
.

e-

B. Differencing and rescaling technique

Let x(t) represent the time series of the studied signal
our case magnetic field magnitudeB, velocity magnitudev,
ion density r, kinetic energy densityrv2, magnetic field
energy densityB2 or the Poynting flux component approx
mated byvB2. A set of time seriesdx(t,t)5x(t1t)2x(t)
is obtained for each value of the nonoverlapping time lagt.
The PDF P(dx,t) is then generated for each time seri
dx(t,t). Figure 1 shows the set of such raw PDFs of t
density fluctuations for time lags between 46 s and;9 days.
A generic one-parameter rescaling method@14# is applied to
these PDFs. We extract the scaling indexa, with respect to
t, directly from the time series of the quantitydx. Practi-
cally, obtaining the scaling exponent relies on the detect
of a power law,P(0,t)}t2a, for values of the raw PDF
peaks and time lagt. Figure 2 shows the peaksP(0,t) of the
unscaled PDFs plotted versust on log-log axes for the four
bulk plasma parameters. We see that the peaks of these P
are well described by a power lawt2a for a range oft up to
;26 hr. We now takea to be the scaling index and attem
to collapse all unscaled PDFsP(dx,t) onto a single curve
Ps(dxs) using the following change of variables:

P~dx,t!5t2aPs~dxt2a!. ~1!

A self-similar Brownian walk with Gaussian PDFs on a
temporal scales and indexa51/2 is a good example of the
process where such a collapse can be observed~see, e.g.,
Ref. @18#!. For experimental data, an approximate collapse
PDFs is an indicator of a dominant self-similar trend in t
time series, i.e., this method may not be sensitive enoug
detect multifractality that could be present only during sh
time intervals. One can treat the identification of the scal
exponenta and, as we will see, the non-Gaussian nature
the rescaled PDFs (Ps) as a method for quantifying the in

g

ch

FIG. 2. Scaling of the peaksP(0,t) of the PDFs for all quanti-
ties under investigation:s corresponds todB2, h to the ion den-
sity dr, L to the kinetic energy densityd(rv2), and n to the
Poynting flux componentd(vB2). The plots have been offset ver
tically for clarity. The errors are estimated as in Fig. 1.
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TABLE I. Scaling indices derived fromP(0,t) andP(s,t) power laws.

Quantity a from P(0,t) a from P(s,t) Approx. tmax PDF scales

dB 20.4760.02 20.2360.05 26 hr No
dv 20.5260.05 20.2160.06 26 hr No
d(B2) 20.4360.03 20.3960.08 26 hr Yes
d(r) 20.3960.03 20.3760.05 26 hr Yes
d(rv2) 20.4160.03 20.3560.05 26 hr Yes
d(vB2) 20.4260.02 20.3960.06 26 hr Yes
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termittent character of the time series. Another possible
terpretation of the rescaling is to treatP(dx,t) as the self-
similar solution of the equation describing the PD
dynamics. The monoscaling of the fluctuations PDF, toge
with the finite value of the samples’ variance, indicates tha
Fokker-Planck approach can be used to express the dyna
of the unscaled PDF in time and with respect to the coo
natedx @19#. In Sec. IV we will use the Fokker-Planck equ
tion to develop a dynamical model for the fluctuations o
served in the solar wind. Ideally, we use the peaks of
PDFs to obtain the scaling exponenta, as the peaks are
statistically the most accurate parts of the distributions.
certain cases, however, the peaks may not be the opt
statistical measure for obtaining the scaling index. For
ample, theBz component of the solar wind magnetic field
measured with an absolute accuracy of typically about
nT. Such discreteness in the time series introduces large
rors in the estimation of the peak valuesP(0,t) and may not
give a correct scaling. However, if the PDFs rescale, we c
in principle, obtain the scaling exponent from any point
the curve. We will illustrate this in the following sectio
where we obtain the rescaling indexa from two points on
curvesP(0,t) andP(s,t).

III. PDF RESCALING RESULTS

We are now ready to present results of the rescaling p
cedure as applied to the solar wind bulk plasma parame

FIG. 3. One-parameter rescaling of the PDF for the fluctuati
in the magnetic field energy densityB2. The curves shown corre
spond tot between 2 min and 26 hr. Error bars as in Fig. 1.
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Figure 1 shows the unscaled~raw! PDF curves of the ion
density data. These PDFs, like all others presented in
section, were generated with the bin size decreasing line
toward the center of the distribution to improve the accura
of the PDF for small fluctuations. Although the entire ran
of data was used to create these PDFs, we truncated
plotted curves forudxu>10s(t), wheres(t) is a standard
deviation of the differenced time series for the specific tim
lag t. Figure 2 then showsP(0,t) plotted versust on log-
log axes for dx5d(r), d(rv2), d(B2), and d(vB2).
Straight lines on such a plot suggest that rescaling~1! holds
at least for the peaks of the distributions. In Fig. 2, lines w
fitted with R2 goodness of fit for the range oft between 2
min and 26 hr, omitting points corresponding to the first tw
temporal scales as in these cases the sharp peaks of the
cannot be well resolved. The lines suggest self-similarity p
sists up to intervals oft'26 hr. The slopes of these line
yield the exponentsa and these are summarized in Table
along with the values obtained from analogous plots
P„s(t),t… versust which show the same scale break a
the same scaling exponent ford(r), d(rv2), d(B2), and
d(vB2), to within the estimated statistical error. Within th
scaling range we now attempt to collapse each correspon
unscaled PDF onto a single master curve using scaling~1!.
Figures 3–6 show the result of the one-parameter resca
applied to this unscaled PDF of fluctuations inr, rv2, B2,
andvB2 respectively, for temporal scales up to;26 hr. We
see that the rescaling procedure~1! using the value of the
exponenta of peaksP(0,t) shown in Fig. 2 gives good

s

FIG. 4. As in Fig. 3 for ion density fluctuationsdr.
4-3
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HNAT, CHAPMAN, AND ROWLANDS PHYSICAL REVIEW E67, 056404 ~2003!
collapse of each curve onto a single common functional fo
for the entire range of the data. These rescaled PDFs
leptokurtic rather than Gaussian and are thus strongly s
gestive of an underlying nonlinear process. The fluctuat
PDFs for all monoscaling quantities investigated here
nearly symmetric. This is in sharp contrast with the stro
asymmetry of the PDF of velocity fluctuations in hydrod
namic turbulence reported previously in Refs.@10,20#. This
asymmetry of the statistics for the velocity increments co
cides with the highly intermittent character of the flow a
multifractal scaling of these fluctuations. We applied zero
order correlation functions, defined separately for the po
tive and the negative branch of the PDF@20#, to quantify the
asymmetry of fluctuation PDFs for the solar wind. Th
analysis was performed using PDFs generated fort
'12 min ~that is, within the scaling region!. In the case of
velocity increments we find that the negative moment is,
average, 11% lower compared to the positive one. On
other hand, the quantities that we have found with s

FIG. 5. As in Fig. 3 for the kinetic energy density fluctuatio
d(rv2).

FIG. 6. As in Fig. 3 for the Poynting fluxd(vB2).
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similar increments do not have appreciable asymme
These show differences between negative and positive
ments of about 2 –3 %, which is, however, well above t
statistical error of this procedure.

It has been reported previously@10# that the PDFs ob-
tained from hydrodynamic turbulence have exponential ta
These would look linear on the linear-log plots that are us
in this paper. In the case of solar wind bulk plasma para
eters, we do not find such a clear exponential cutoff reg
but rather see stretched exponential tails of the fo
P(udxu);exp(2Audxum). This is illustrated in Fig. 7 where
we plot ln„ln@P(dx)#… against ln(dx) for all positive fluctua-
tions of the monoscaling quantities. It can be seen that, as
move away from the peak, these curves converge to lines
good fits can be obtained in the interval@2s,10s#, wheres
stands for standard deviation.

We can now directly compare the functional form of the
rescaled PDFs by normalizing the curves and overlying th
on the single plot for a particulart within the scaling range.
Figure 8 shows these normalized PDFsPs(dxs ,t) for dxs
5d(r)s, d(B2)s , d(rv2)s , d(vB2)s andt'1 hr overlaid on
a single plot. Thedxs variable has been normalized to th
rescaled standard deviationss(t'1 hr) of Ps and the values
of the PDF has been modified to keep probability constan
each case to facilitate this comparison. These normali
PDFs have remarkably similar functional form suggesting
shared process responsible for fluctuations in these
plasma parameters on temporal scales up totmax'26 hr.

It has been found previously@15# that the magnetic field
magnitude fluctuations are not self-similar but rather mu
fractal. For such processes, the scaling derived fromP(0,t)
would not be expected to rescale the entire PDF. To ve
this we applied the rescaling procedure for magnetic fi
magnitude differencesdB(t,t)5B(t1t)2B(t). Figure 9
shows the result of one parameter rescaling applied to
PDFs of the magnetic field magnitude fluctuations. We
that the scaling procedure is satisfactory only up to;3 stan-
dard deviations of the original sample, despite the satis

FIG. 7. Positive tails of all self-similar PDFs fort'30 min.
The solid lines show linear fits obtained in the interval@3s,6s# and
extended to@2s,10s# fluctuations interval.
4-4
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tory scaling obtained for peaksP(0,t) of the PDFs~see inset
of Fig. 9!. This confirms the results of Ref.@11# where a
two-parameter Castaing fit to values within three stand
deviations of the original sample yields scaling in one p
rameter and weak variation in the other. Attempts to impro
the collapse by using information in the tails~values udBu
.3s) would introduce a significant error in the estimatio
of the scaling exponenta. We found a similar lack of scaling
in the fluctuations of the solar wind velocity magnitude a
we show the rescaled PDF in Fig. 10. We stress that
log-log plots of PDF peaksP(0,t) show a linear region for
both velocity and magnetic field magnitude fluctuations~see
inset in each figure!. Their PDFs, however, do not collaps
onto a single curve when rescaling~1! is applied. This lack
of monoscaling is evident when indices derived fromP(0,t)
and these found forP(s,t) are compared~see Table I!.

FIG. 8. Direct comparison of the PDFs of fluctuations for
four quantities.s corresponds tod(B2), h to the ion densityd(r),
L to the kinetic energy densityd(rv2), andn to the Poynting flux
componentd(vB2).

FIG. 9. As in Fig. 3 for the solar wind magnetic filed magnitu
fluctuations.
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d
-
e

e

IV. MODELING THE DATA

The rescaling technique applied in the preceding sec
indicates that, for certain temporal scales, the PDFs of so
bulk plasma parameters can be collapsed onto a single m
ter curve. The challenge now lies in developing physi
models that can describe the functional form of this cur
Here we consider two approaches. The first is a statist
approach where we assume that the fluctuations can be
scribed by a stochastic Langevin equation. The sec
method is to assume the fluctuations are the result of
nonlinear energy cascade and derive the corresponding
form for the rescaled PDFs~Castaing distribution! @10#.

A. Diffusion model

The Fokker-Planck~FP! equation provides an importan
link between statistical studies and the dynamical appro
expressed by the Langevin equation@18#. In the most genera
form the FP equation can be written as

]P

]t
5“dx„A~dx!P1B~dx!¹dxP…, ~2!

whereP[P(dx,t) is a PDF for the differenced quantitydx
that varies with timet, A(dx) is the friction coefficient, and
B(dx) is related to a diffusion coefficient that we allow t
vary with dx. For certain choices ofA(dx) and B(dx), a
class of self-similar solutions of Eq.~2! satisfies the rescaling
relation given by~1!. This scaling is a direct consequence
the fact that the F-P equation is invariant under the trans
mationsdx→dxt2a andP→Pta. It can be shown~see Ap-
pendix A! that Eqs.~1! and ~2! combined with power law
scaling of the transport coefficientsA(dx) andB(dx) lead to
the following equation for the PDF:

]P

]t
5

]

]~dx! F ~dx!121/aS a0P1b0dx
]P

]~dx! D G , ~3!

wherea0 andb0 are constants,a is the scaling index derived
from the data andP(dx) anddx are unscaled PDF and fluc

FIG. 10. As in Fig. 3 for the solar wind velocity fluctuations.
4-5
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HNAT, CHAPMAN, AND ROWLANDS PHYSICAL REVIEW E67, 056404 ~2003!
tuations, respectively. Written in this form, Eq.~3! immedi-
ately allows us to identity the functional form of the diffu
sion coefficient, namely,D(dx)}(dx)221/a. In Appendix A
we show how Eq.~3! can also be expressed as

b0

a0
~dxs!

dPs

d~dxs!
1Ps1

a

a0
~dxs!

1/aPs5C. ~4!

Partial differential equation~4! can be solved analytically
and one arrives at the general solution in the form

Ps~dxs!5
a0

b0

C

udxsua0 /b0
expS 2

a2

b0
~dxs!

1/aD

3E
0

dxs
expS a2

b0
~dxs8!1/aD

~dxs8!12a0 /b0
d~dxs8!1k0H~dxs!,

~5!

wherek0 is a constant andH(dxs) is the homogeneous so
lution:

H~dxs!5
1

~dxs!
a0 /b0

expS 2
a2

b0
~dxs!

1/aD . ~6!

We then attempt to fit the predicted solution~5! to the nor-
malized rescaled PDFs. The results of such a fit for the fl
tuations of the kinetic energy density PDF are shown in F
11 ~solid line!. This fit is obtained with the following param
eters: a0 /b052.0, b0510, C50.001 52, k050.0625, and
a50.41 as derived from the rescaling procedure. We n
that the figure is a semilog plot and thus emphasizes the
of the distribution—for a different value of ratioa0 /b0 the fit

FIG. 11. Example of the fit of the PDF functional form predict
by a Fokker-Planck description~5! ~solid line! and a Castaing
model ~dashed line! to the fluctuations PDF of thed(rv2) bulk
parameter.
05640
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around the smallest fluctuations could be improved. Equa
~5! cannot, however, properly model the smallest fluctuatio
as it diverges fordxs→0.

Let us now assume that a Langevin equation in the fo

d~dx!

dt
5b~dx!1g~dx!j~ t ! ~7!

can describe the dynamics of fluctuations. In Eq.~7! the ran-
dom variablej(t) is assumed to bed correlated, i.e.,

^j~ t !j~ t1t!&5s2d~t!. ~8!

This condition is fulfilled in the data analysis by formin
each time seriesdx(t,t) with nonoverlapping time intervals
t and was also verified by computing the autocorrelat
function of the differenced time series. Introducing a ne
variablez5*0

dx1/g(dx8)d(dx8), Eq. ~7! can be written as

dz

dt
5

b~z!

g~z!
1j~ t !. ~9!

One can immediately obtain a FP equation that correspo
to the Langevin equation~9! @19#. We can then compare thi
FP equation with that given by Eq.~3! to express coefficients
b(dx) andg(dx) in terms ofa0 andb0 ~see Appendix B!.
Defining D05^j2(t)&/2, we obtain

g~dx!5Ab0

D0
~dx!121/2a ~10!

and

b~dx!5Fb0S 12
1

2a D2a0G~dx!121/a. ~11!

Equation~7! together with definitions of its coefficients~10!
and~11! constitutes a dynamical model for the fluctuations
the solar wind quantities. From Eqs.~10! and ~11!, we see
that the diffusion of the PDF of fluctuations in the solar win
is of comparable strength to the advection (a0 /b0'2). We
stress that the advection and diffusion processes that we
cuss here are of the probability in parameter space for fl
tuations and do not refer to the integrated quantities.

B. Castaing model

We now, for comparison, consider a model motivated
rectly by a cascade in energy, due to Castaing. This empir
model was developed for the spatial velocity fluctuations
corded from controlled experiments in wind tunnels@10,21#
and has been applied to the solar wind data@11,12#. The
underlying idea of this approach is that, for constant ene
transfer rate between spatial scales, all quantities should
hibit a Gaussian distribution of fluctuations. The interm
tency is then introduced to the PDF through the fluctuatio
of the variances of that Gaussian distribution. A log-norma
distribution is assumed for variances:
4-6
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Q~s!5
1

A2pl
expS 2

ln2~s/s0!

2l2 D d~ ln@s#!, ~12!

wheres0 is the most probable variance of the fluctuatio
andl is the variance of ln(s). Combining these two hypoth
esis Castaing proposed the following functional form for t
observed PDF:

Pl~dx!5
1

2plE0

`

expS 2
~dx!2

2s2 D expS 2
ln2~s/s0!

2l2 D ds

s2
.

~13!

The dashed line in Fig. 11 shows the Castaing curve fi
with parametersl51.275 ands050.225 to thed(rv2)
PDF.

We can now compare the rescaled PDFs with both FP
Castaing predicted curves which are shown in Fig. 11.
can see from the figure that both models provide an adeq
fit to thed(rv2)s PDF, and hence will also describe the PD
of other scaling bulk plasma parameters. Both curves, h
ever, fall significantly below observed PDF values f
ud(rv2)su<2, although the Castaing distribution fits th
peak of the PDF reasonably well~see inset in Fig. 11!. This
departure from the experimental PDF, in the case of
Castaing distribution, may reflect the difference between
drodynamics and MHD turbulence.

V. SUMMARY

In this paper we have applied a generic PDF resca
method to fluctuations in the solar wind bulk plasma para
eters. We find that, consistent with previous work, magne
field and velocity magnitude fluctuations are multifract
whereas the PDFs of fluctuations inB2, r, rv2, andvB2 can
be rescaled with just one parameter for temporal scales u
;26 hr. The presence of intermittency in the plasma flow
manifested in these quantities simply by the leptokurtic
ture of their fluctuation PDFs, which show increased pro
ability of large fluctuations compared to that of the Norm
distribution. Fluctuations on large temporal scales,t
.26 hr, are uncorrelated, in that their PDFs converge
ward a Gaussian distribution. The fact that all quantit
share the same PDF, to within errors, is also strongly sug
tive of a single underlying process. This is also supported
the similar values of the scaling exponents.

The simple scaling properties that we have found allow
to develop a Fokker-Planck approach that provides a fu
tional form of the rescaled PDFs as well as a Langevin eq
tion for the dynamics of the observed fluctuations. T
model shows that both advective and diffusive terms nee
be invoked to describe the dynamics of the fluctuations. T
calculated diffusion coefficient is of the formD(xs)
}(dxs)

221/a. We obtained a good fit of the model to ou
rescaled PDFs over at least ten standard deviations. We
examined a Castaing model for turbulence and found a se
fit parameters for which both the Castaing distribution a
our diffusion model have nearly identical form. Since bo
the FP model and the Castaing distribution fit our resca
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PDFs, we conclude that their moments should exhibit sa
variation with time lagt.
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APPENDIX A

Let P(dx,t) be a homogeneous function that satisfi
scaling~1!. Our aim is to find the functional form of coeffi
cientsA(dx) andB(dx) for which P(dx,t) is a solution of
a FP equation~2!. Using Eq.~1! we can now rewrite Eq.~2!
to read

2
a

ta11 S Ps1dxs

dPs

d~dxs!
D

5
Ps

ta

dA~dx!

d~dx!
1

A~dx!

t2a

dPs

d~dxs!

1
1

t2a

dB~dx!

d~dx!

dPs

d~dxs!
1

B~dx!

t3a

dPs

d~dxs!
.

~A1!

If all terms on the right-hand side~rhs! of Eq. ~A1! are to
contribute and forP(dxs) to remain a function ofdxs only,
we must have

A~dx!

ta21
5a~dxs! and

B~dx!

t2a21
5b~dxs!. ~A2!

Both A(dx) andB(dx) must then be of form

A~dx!5a0~dx!h and B~dx!5b0~dx!n, ~A3!

where a0 and b0 are constants. Changing variables to t
rescaleddxs and substituting Eq.~A3! into Eq. ~A2!, we
express exponentsh andn in terms of the rescaling indexa
derived from the data. We then obtain

h512
1

a
and n522

1

a
, ~A4!

which allows us to write the final power law form ofA(dx)
andB(dx):

A~dx!5a0~dx!121/a and B~dx!5b0~dx!221/a.
~A5!

Substituting these expressions into FP equation~2! we obtain
Eq. ~3! from Sec. IV. Using these results, term
dA(dx)/d(dx) on the rhs of Eq.~A1!, for example, becomes

dA~dx!

d~dx!
5S 12

1

a Da0~dx!21/a. ~A6!
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Performing similar algebra on all terms in Eq.~A1!, we ar-
rive to equation

2a
d~dxsPs!

d~dxs!
5

d

d~dxs!

3F ~dxs!
121/aS a0Ps1b0~dxs!

dPs

d~dxs!
D G .
~A7!

Integrating once, we obtain from Eq.~4!,

b0

a0
~dxs!

dPs

d~dxs!
1Ps1

a

a0
~dxs!

1/adPs5C, ~A8!

whereC is the constant of integration.

APPENDIX B

Consider the following Langevin type of equation:

d~dx!

dt
5b~dx!1g~dx!j~ t !, ~B1!

where random variablej(t) is assumed to bed correlated,
i.e.,

^j~ t !j~ t1t!&5s2d~t!. ~B2!

Introducing a new variablez5*0
dx1/g(dx8)d(dx8), Eq. ~B1!

can be written as

dz

dt
5G~z!1j~ t !,

where

G~z!5
b~z!

g~z!
. ~B3!
,

tt.

o,

05640
One can immediately obtain a FP equation that correspo
to the Langevin equation~B3! and reads

]P~z,t!

]t
1

]

]z
@G~z!P~z,t!#5D0

]2P~z,t!

]2z
, ~B4!

whereD05s2/2. The probability is an invariant of the vari
able change so thatP(dx)d(dx)5P(z)dz and we can then
rewrite Eq.~B4! for P(dx,t).

]P

]t
5

]

]~dx! F S D0g~dx!
dg~dx!

d~dx!
2b~dx! D P1D0g2

]P

]~dx!G .
~B5!

Comparing Eq.~B5! with the FP equation~3!, we can iden-
tify

D0g25~dx!121/ab0dx ~B6!

and then we must demand that

D0

2

dg2~dx!

d~dx!2
2b~dx!5a0~dx!121/a. ~B7!

In summary, we have shown that the FP equation given
Eq. ~3! is equivalent to the stochastic Langevin equation~7!,
where coefficientsb andg are given by

g5Ab0

D0
~dx!121/2a ~B8!

and

b5Fb0S 12
1

2a D2a0G~dx!121/a. ~B9!
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